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Overview

Timeline Barriers addressed

Start date: October 1, 2014 > Low achievable energy density
> Polysulfide dissolution

> Cycling Stability
> Electronic conductivity

End date: September 30, 2017

Percent complete: 85%

Budget o Poor rate capability
e Total project funding: $1,250,061 > Surface passivation of both
— DOE share: $1,250,061 anodes and cathodes
— Contractor share: $ 0 | Partnhers
e Funding received in FY 2016: * UPitt (. K. Achary)

$416.687 > A. Manivannan (Global Pragmatic Materials)
’ o Kurt J. Lesker Co. (KJL)
> Complete Solutions (Technology Translation)

e Funding for FY 2017: $416,687



Project Objectives: Overall(:
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- (Characteristics

- Specific Discharge Pulse Power  W/kg 700
- Discharge Pulse Power Density  W/I 1,500
- SpecificRegen Pulse Power  W/kg 300
~ RechargeRate  kw 1.4
[ SpecificEnergy U Wh/kg 350
© EnergyDensity Wwh/ 750
I Calendarkife " vear 15
" Cyclelife 0 Cycles 1,000
. OperatingTemperatureRange = °C 3010 +52
Synthesis and characterization of suitable LIC matrix materials and multilayer

composite sulfur cathodes

Development of LIC coated sulfur nanoparticles
> Scale up of high capacity engineered LIC coated multilayer composite electrodes

Modification strategies for improving electronic conductivity of sulfur
Advanced high energy density, high rate, extremely cyclable cell development
First principles calculations for LIC and dopant materials identification



Project Objectives: 2016-17

Development of LIC coated sulfur nanoparticles, scale up of high capacity
engineered LIC coated multilayer composite electrodes and doping strategies for
improving electronic conductivity of sulfur

»Develop interface engineering concepts and coating strategies
of Phase-1 materials to generate conductive carbon based
multilayer composite electrodes of sulfur cathode

»Design and engineering of high capacity LIC coated sulfur
nanoparticles for generation of high capacity materials for
targeted energy density and 4 mAh cell

»Synthesis of doped sulfur nanoparticles with high electronic

conductivity to reduce additive weight and increase energy
density



Milestones-FY 2016/17

Fundamental electrochemical study to understand the interface
Milestone  electrochemical properties such as change of charge transfer resistance, = Completed
Li* diffusivity and electronic conductivity
Develop interface engineering concepts and coating strategies of
Milestone  Phase-1 materials to generate carbon based multilayer composite Completed
electrodes of sulfur cathode
Synthesis of doped sulfur nanoparticles with high electronic

Milest .. » : . : Completed
HESTOte conductivity to reduce additive weight and increase energy density. omplete
Design and engineering of high capacity LIC coated sulfur
. . : : . Completed
Go/No-Go  nanoparticles for generation of high capacity materials for targeted
energy density and 4 mAh cell
Milestone Generation qf integrated doped nanoparticulate sulfur-carbon- Comlsia
LIC composite electrode
Milestone Cost analys1§ of the integrated electrode (I.E.) electrodes, electrolytes, Gt
separators, binders, and related processes
Milestone Pr}smatlc/pouch-type full cell assembly of [.E. with optimum O
thickness
Milestone  Cell testing On-going



Develop interface Test results
engineering concepts

and coating strategies
of Phase-1 materials to
generate carbon based e
multilayer composite
electrodes of sulfur

cathode
Synthesis of doped Composite polymer Directly doped sulfur Generation of
sulfur nanoparticles electrolyte coatings assembly development integrated doped
with high electronic nanoparticulate sulfur-
.. carbon-LIC
conductivity to reduce .
. . — compOSIte electrode
additive weight and
increase energy
density.
Composite and . Testing progress — Establishing and
framework approach § optimizing techniques

Go/ No — Go decision point: The Go/ No — Go point was demonstrated by generation of LIC coated

sulfur nanoparticles with targeted energy density and 4 mAh cell

Challenges and barriers: Techniques for effective LIC lamination of thick electrodes (> 10 mg/cm?)
and of sulfur nanoparticles is currently ongoing




Technical Accomplishments: Theoretical Study -
Improving lonic Conductivity

» Introduction of dopants inducing formation of Li*-vacancies could improve the ionic
conductivity

> One Li*-vacancy can be created by :

> substitution of aliovalent cation on Li-site/Si-site/O-site with formula [Li,
,,ID1.1Si0,; [Li,., [D],Si, ] O,; Li, Si [0, [D]]

» Effect of doping on the activation barriers have been studied

» Using the nudged elastic band method implemented in VASP (Vienna ab-initio
simulation package), various Li-ion migration pathways have been considered
and corresponding activation barriers E, have been calculated
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Technical Accomplishments: Doped Li,SiO,- diffusion pathways
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Technical Accomplishments: Effect of dopants on conductivity
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Technical Accomplishments: Effect of doping on conductivity‘
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Technical Accomplishments: Gen-2 framework
materials with no initial capacity loss
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» Improvement in cycling stability of sulfur cathodes by use of Gen-1 CFM materials
» Initial capacity loss due to framework interaction with sulfur
» |nitial capacity loss is prevented and cycling stability is improved by use of

Gen-2 CFM materials



Technical accomplishments: Composite Polymeric
Electrolyte (CPE) membranes as LICs
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Technical Accomplishments: Gel-polymer electrolytes
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tested to show
stability at much
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» CPE separators show
absolutely no higher order
polysulfides trapped therein

The FT-IR spectra of CPE before and after electrochemical
cycling (100 cycles) is shown in the figure
The FT-IR analysis shows that the chemical nature of the

unlike commercial liquid . :
CPE is not destroyed upon cycling
electrolyte separators after . :
* The CPEs are stable under electrochemical cycling
100 cycles




Technical Accomplishments: Directly doped sulfur architectures
(DDSA) electrode with polysulfide trapping agent (PTA)

Lithium ion conducting matrix (selectively permeable)
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» High loading>15 mg/cm? 3-D sulfur cathodes
» Conductive nanodots add to capacity significantly and act as
PTAs

Polysulfide




Technical Accomplishments: Thick 3-D sulfur DDSA
electrodes
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Technical Accomplishments: Electronic modification
of Sulfur
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Comments

There were no previous reviewer comments in 2016.




Collaboration and Coordination with Other
Institutions

Collaborators (outside the VT Program):

> Dr. D. Krishnan Achary (University of Pittsburgh): for solid-state
nuclear magnetic resonance (MAS-NMR) characterization

> A. Manivannan (Global Pragmatic Materials): Materials
characterization using XPS studies

> Kurt J. Lesker Co. (KJL): Thin film deposition and vacuum
techniques

> Complete Solutions: Technology Translation



Remaining Challenges and Barriers(:)

»Challenges

» Demonstration of full-cell performance for 1000 cycles

» Demonstration of electrode-level capacity and decrease in additive content
» Barriers

»No significant barriers to proposed work have been encountered thus far

» Possible barriers include accounting for scaling of performance and increasing
sulfur weight percentage in electrodes

» Lithium-metal anode based batteries fail to cycle over extended cycling due to
dendrite structure formation and separator puncture in the case of commercial
separators

»Solutions

»Use of CPEs eliminates problem of separator puncture ensuring that long

cycling will be demonstrated in full cells

»Doping of sulfur in DDSA electrodes helps increase sulfur weight percentage to
>80%

» Lithium metal anode based full cells will cycle for 1000 cycles using novel
anodes will be developed as part of DOE-EERE-OVT-ES-327




Proposed Future Work

Large electrode fabrication and testing

Final deliverable of >4 mAh cell

Upcoming key milestones

On-
going

Cell testing complete and deliverable >4
mAbh full cells

On-going




Summary

Cycling characteristics of various sulfur battery systems synthesized and evaluated in
this work.

Initial discharge Initial capacity

capacity (mAh/g- fade* (% c:::cei ::;iyg/‘;)
S) capacity)

LIC coated SNPs 1384.7 14.30 0.0088
Sulfur CFM-2 1460.4 54.79 0.012
Sulfur CFM-3 1565.5 14.65 0.0033
Sulfur CFM-4 1625.3 13.15 0.0031

Sulfur IFM 1012.7 9.09 0.0017

CPE with filler-3 860.1 6.70 0.0027

DDSA electrode with PTA

rates of <0.01%/cycle

1305

4.26

0.0014

¥Fade rate calculated on the basis of 1%t cycle capacity and 5t cycle capacity.

» Demonstrated sulfur cathodes with very high capacities and exceptionally low fade

» Cycling behavior demonstrated for up to 300 cycles with further cycling tests ongoing
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Technical Accomplishments: Li-diffusivity in doped
Li,SI10,
Temperature dependence of diffusion coefficient could be estimated from:

D(T)=a? v exp {-E /k,T },

D — diffusion constant

a — the hopping distance (~ 3.0 A in this case)
v’ —hopping frequency (~ 1013 s1)

Assuming minimum E, =~ 0.6 eV from E,
calculations,

For T=250C D = ~1012 cm?/s
For T=500°C D =~10% cm?/s
For T=1000°C D =~103 cm?/s

Also, doping increases the Li-ionic conductivity on 2-3 orders in comparison to pure
Li,SiO, confirming experiments with theoretical calculations.



Technical Accomplishments: Gen-1 Framework
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Technical Accomplishments: Inorganic
Framework Materials (IFM)

IFM after Sulfur infiltration
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Porous framework materials demonstrate low fade rate
(0.0017%/cycle)



Technical accomplishments: New Flame resistant
CPEs

Commercial separator
exposed to heat

Commercial battery separator CPE battery separator

Commercial separator CPE unaffected by heat
shrinking within 5 secs for over 60 sec Commercial battery separator CPE battery separator upon

upon exposure to fire exposure to fire






